May 19, 2003


Guy LeBas


Environmental Pros and Cons of Nuclear Power:

In-class presentation, Thursday May 8, 2003


Presentation overview:



·         What do you think of when you hear “nuclear power”?

o        People in the class answered “evil” and “dangerous,” to take two example

o        Out of over 3,000 respondents to this question in a survey, only 2.5% responded with positive images

o        This perception is completely unrealistic; I’ll try to prove that to you.

·         Outside of Chernobyl, there has never been a single death attributed to the mining, reaction, or disposal of nuclear material

·         It’s safer than you think and provides the type of power necessary to run this planet

·         Far less pollutive than fossil fuels

·         Make your own decisions based on these facts:


            Topic 1: Nuclear Material


·         Uranium, discovered to provide energy in 1939 is one of the most abundant elements in Earth’s crust

·         Uranium is currently mined through both strip and drill mining processes then enriched via leaching (provides potency necessary for fission)

o        Uranium mining harmful to the environment b/c actual removal of Earth

o        Sulfur and other toxic chemicals used in refining process

o        Only small quantities of useable Uranium are gained-wasteful process

·         Two main isotopes: U-238 and U-235

o        238 is relatively stable in the short term

o        235 (occurring at .7% naturally) has less “nuclear glue” (neutrons) and decays in such a way as to cause spontaneous splitting, or fission, of the atom and the shooting off of one additional neutron

o        235 is useful in nuclear reactors and must constitute about 3% of a total mass of Uranium for perpetual fission to occur.  It is enriched through processes mentioned above.

·         Uranium is radioactive

o        Nucleus decays

o        Emits alpha and beta particles (harmful, but easily stopped)—dangerous mainly in gas form if inhaled

o        Emits gamma particles, or nucleotides, which can seep into water and air and cause radiation poisoning


Topic 2: Nuclear Reactors


            Link: A simulation of a nuclear reactor; also useful for this explanation.


·         Nuclear reactors use radioactive material to produce electricity

·         This process involves the following basic steps: create fission, which produces heat, which heats water, which rises via convection (and may or may not turn to steam), and turns large turbines creating electromagnetic energy on the order of megawatts.

o        Fission, as we have seen, is almost exclusively the product of U 235 and puts off tremendous amounts of heat energy

o        Devices in the core of the reactor shoot neutrons at a 3kg ball (critical mass) of Uranium, causing a fission reaction which shoots off more neutrons, causing a chain reaction in one of three states

§         Sub-critical: fission shuts down

§         Critical: fission stable and perpetual

§         Super-critical: fission unstable and unable to infinitely perpetuate

o        Aluminum rods control the flow of neutrons to limit reaction and prevent super-critical state, which can lead to a “meltdown” but NOT an explosion

o        [here we segued into a brief discussion of a nuclear weapon vs. a nuclear reactor]

§         a reactor has creative potential, a weapon destructive

§         weapons us primarily plutonium, a useless substance for reactors

§         weapons use explosives to combine two large hunks of just sub-critical radioactive mass so that they suddenly become super critical

§         the result is a large explosion which also spreads tremendous radiation

§         such an explosion cannot happen with a reactor

o        The fission reaction produces heat which warms water flowing through the reactor core

o        Water in a reactor may either be pressurized so that it remains liquid at very high temperature, or it may be allowed to boil and create steam

o        Either way, the water rises and turns enormous turbines that electricity

o        Huge towers are simply cooling towers where hot water can exchange heat with surrounding air—they are not the reactor itself

·         The only waste products from this process are steam and radioactive nuclear waste



Topic 3: Radioactive Waste


·         Radioactive uranium 238 and 235 from reactors has half-lives of 4.5b years and 740m years, respectively.

o        Elements are considered safe after 10 half lives

o        This means that it will take 45 billion years before this material is safely inert

o        This is much longer than the present life of the universe

·         How is it possible to store something for such a long time?

o        Waste is now packed in barrels and stored dry or placed in pools of water to absorb the radiation, but these are only temporary solutions

§         [we discussed the advantages and disadvantage of such storage and realized that even now, such means of disposing of waste are dangerous]

o        Current government limitations only require waste be stored safely for 10,000 years

o        Suggestions: underground in dry area (to prevent seeping into ground water) with minerals to block and man-engineered barriers

o        But: 10,000 years ago, writing didn’t even exist, so will signs be enough to prevent future digging at site?

·         We have a basic solution, but how do we find a location to store the waste?

o        NIMBY principle has been the guiding factor in decision making

o        [discussion of NIMBY—in the long run it leaves no where to put the stuff!  Work together to find some solution]

·         Currently, we have chosen Yucca Mt., in western Nevada, as our prime storage site

o        Meets all characteristics for a good site

o        Increasing tectonic activity in the area may create future problems

o        Nevada passed a law making it illegal to store or transport resulting in an ongoing court battle





            Questions asked

·         Storage debate: is there a safer way to store waste than at Yucca Mt.?  What alternatives are there?

·         Rationality of fear: a pound of uranium can take the place of a million gallons of gasoline, more than a car can use in a lifetime.  Will uranium ever be used in non-naval vehicles?  Should it be?

·         France operates 80% on nuclear power and has never had a disaster or near disaster.  Is fear of nuclear power a cultural issue?  Is that fear brought on by our own development and deployment of nuclear weapons in 1946?

·         Would nuclear power have existed without nuclear weapons?  Does the potential to make weapons from nuclear material justify not using it for anything?

·         Is nuclear power worth it?


From here to the end of our allotted time, we discussed primarily the efficacy of nuclear power, especially considering its dangerous waste products and the costs of mining uranium.  We compared it to fossil fuels and came to a number of conclusions.  The most common was that nuclear power, which provides, for example, 80% of France’s power supply without problem, is actually far less harmful to the environment than standard fossil fuel power.  At the same time, several people maintained a very negative viewpoint on the efficacy of nuclear power, primarily from emotional repulsion.